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Hi Monica
 
I spoke with Ruth on the phone earlier and she suggested that I send my updated analysis to you.
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 happy for this analysis to be shared with all members of the inquiry, and I’m willing to discuss
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Analysis of daily death data during the Morwell mine fire


Summary


This latest analyses gives a 99% probability of an increase in deaths during the 45 days of
the fire, with an estimated 23 additional deaths. This is larger than the 79% to 89%
probability and 10 to 14 additional deaths from my two previous analysis. This increase in
probability and deaths occurred because this analysis used daily data whereas the previous
analyses used monthly data. Using days instead of months reduces the measurement error
between exposure and death, and an increased statistical significance and risk is entirely
expected based on the theory of measurement error [1]. This analysis also had a better
control for the potential confounder of temperature, as temperature was also modelled on a
daily time scale.


Introduction


This document contains my third analysis of the Morwell mine fire data. This is an updated
analysis using daily death data for four postcodes for the years 2009 to 2014.


Methods


Data


The death data were daily numbers from 1 January 2009 to 31 December 2014, which is
2191 days. The deaths were split by four postcodes (3840-Morwell, 3842-Churchill,
3825-Moe, 3844-Traralgon) according to usual place of residence. There were 3,414 deaths
in total.


I used population data from the Australian Bureau of Statistics for each postcode over time.
This is a further improvement on my previous analyses which used overall population data
for the Latrobe Valley.


The temperature data came from the Bureau of Meteorology weather station at Morwell
(station number: 85280), which provided daily maximum temperature. Two days were
missing and I imputed the missing temperature using the mean temperature for the days
either side of the missing day. I used maximum temperature rather than mean or minimum
temperature because previous research found that most common temperature measures are
highly correlated and perform equally well when predicting daily death rates [2].
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Statistical methods


I used a regression model to examine the key hypothesis of whether deaths rates were higher
during the 45 days of the fire.


I give the model as an equation below and then explain each line of the equation.


di,t ∼ Poisson(µi,t), i = 1, . . . , 4, t = 1, . . . , 2191,


log(µi,t) = log(popi,t/10000) + α0 + postcodei + trendt + seasont +weekdayt


+ temperaturet + firet,


postcodei ∼ N(0, σ2)


trendt = ns(α1:2, t, 2),


seasont = α3 cos (2πf) + α4 sin (2πf) ,


weekdayt = α5:10Dt,


temperaturet = ns(α11:19,maximum temperaturet, 3× 3),


firet =


{
α20, if date ∈ {9-Feb-2014, 10-Feb-2014, . . . , 26-Mar-2014},
0, otherwise.


The index i is for postcode and the index t is for time. I used a Poisson model as the data
are daily counts of deaths. The trend was fitted as a natural spline (ns) with two degrees of
freedom which allowed the underlying death rate to change slowly during 2009 to 2014 due
to factors such as an ageing population. Season was fitted as an annual sinusoid and f is the
fraction of the year from 0 (1 January) to 1 (31 December) [3]. I modelled the expected
small difference in death rates by day of the week using an independent effect on each day
with Sunday as a the reference day.


Temperature was modelled as a non-linear variable to allow for increased risks in low and
high temperatures [4]. To allow for the known delay between exposure to temperature and
death I also included a lag with a delay up to 21 days. Both temperature and lag were fitted
using a natural spline with three degrees of freedom which is large enough to model a
non-linear association.


To check the adequacy of the model I examined the residuals (difference between observed
and predicted) using a histogram and autocorrelation plot.


Results


Simple table


Table 1 shows a higher mean number of daily deaths in all four postcodes during the period
of the fire compared with all other times. These crude figures do not adjust for the seasonal
pattern in deaths, and the regression model below should give a truer picture of any increase
in death rates.
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Table 1: Summary statistics on daily deaths by postcode and the time of the fire using data
for 1 January 2009 to 31 December 2014


Deaths
Postcode Fire N Mean SD Min Max


Churchill No 2145 0.075 0.27 0 2
Yes 46 0.130 0.40 0 2


Moe No 2145 0.558 0.74 0 5
Yes 46 0.717 0.81 0 3


Morwell No 2145 0.396 0.63 0 4
Yes 46 0.413 0.62 0 2


Traralgon No 2145 0.522 0.73 0 6
Yes 46 0.652 0.87 0 3


All No 8580 0.388 0.65 0 6
Yes 184 0.478 0.73 0 3
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Plots of daily deaths over time
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Figure 1: Daily death numbers in each postcode and the total number of deaths across the
four postcodes for 1 January 2009 to 31 December 2014.
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Figure 2: Daily death numbers in each postcode and the total number of deaths across the
four postcodes for 1 January 2014 to 30 April 2014. The start and end of the fire are shown
by vertical red lines.







Adrian Barnett, September 2015 6


Statistical model results


Table 2: Model of daily deaths. Statistics are the mean and lower and upper 95% credible
interval. Estimates are on a log scale except for the relative risk and absolute number of
deaths.


Mean Lower Upper


Intercept −1.601 −1.732 −1.475
Trend, 1 −0.125 −0.346 0.096
Trend, 2 0.137 0.016 0.258
Postcode, 3825 0.285 0.225 0.346
Postcode, 3840 0.129 0.062 0.194
Postcode, 3842 −0.310 −0.426 −0.196
Postcode, 3844 −0.104 −0.165 −0.042
Season, cos 0.105 −0.057 0.269
Season, sin 0.059 −0.033 0.153
Monday −0.069 −0.196 0.056
Tuesday −0.096 −0.223 0.031
Wednesday −0.042 −0.165 0.083
Thursday −0.060 −0.186 0.064
Friday 0.049 −0.074 0.172
Saturday 0.008 −0.114 0.131
Fire, relative risk 1.324 1.034 1.656
Additional deaths during fire, 3825 8.271 0.860 16.731
Additional deaths during fire, 3840 5.848 0.608 11.830
Additional deaths during fire, 3842 1.124 0.117 2.273
Additional deaths during fire, 3844 7.733 0.804 15.642
Additional deaths, all postcodes 22.976 2.388 46.476


The probability that the death rate was higher than the average during the fire is 0.99. This
means that the probability that the death rate was not higher than the average during the
fire is 0.01. The mean increase in deaths is 1.32 as a relative risk, or 32 as a percentage. The
95% credible interval for the relative risk does not include 1, indicating that the risk was
higher than average during the fire. The mean estimated number of extra deaths during the
fire over the four postcodes is 23.


Effect of temperature


The effect of temperature in Figure 3 is exactly as expected. It shows a steep rise in risk for
high temperatures on the day of exposure, and smaller but longer lasting risk for low
temperatures [4].
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Figure 3: Estimated relative risk of maximum temperature (◦C) by temperature and lag using
a surface plot (left) and contour plot (right).
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Residual plots
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Figure 4: Residual histogram from the model of daily deaths.


The histogram of residuals are centred on zero but with a positive skew which is as expected
when modelling small counts (Figure 4). There were four relatively large residuals over 4 as
shown in Table 3. The large residual in Traralgon on 7/Feb/2009 may be the Black
Saturday bushfires.


Table 3: Four large residuals where the model greatly under-predicted the number of deaths.
Date Postcode Deaths Predicted Residual Pearson residual


08/Oct/2010 Moe 5 0.60 4.40 5.66
19/Jan/2013 Moe 5 0.51 4.49 6.27
07/Feb/2009 Traralgon 6 0.57 5.43 7.22
06/Jun/2009 Traralgon 5 0.58 4.42 5.78


The Pearson goodness of fit statistic is 8749 which is smaller than test limit of 8958, which
is the 95th percentile of a chi-squared distribution [5]. This indicates that the model is an
adequate fit to the data.


The autocorrelation plots of the residuals show no residual autocorrelation in any postcode
as the correlations are small and close to zero (Figure 5). This means there is unlikely to be
any residual confounding by other short-term environmental factors (e.g., humidity).
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Figure 5: Autocorrelation of residuals from the model of daily deaths by postcode. The dotted
horizontal blue line is the limit for assessing significant autocorrelation.
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Appendix


JAGS Code


This is the code using the JAGS software that runs the Bayesian regression model of daily
deaths [6].


model{


# likelihood


for (i in 1:N){


deaths[i] ~ dpois(mu[i]);


log(mu[i]) <- log.pop[i] + alpha + weekday[i] + trend[i] + gamma*fire[i]


+ delta.c[pcode[i]] + season[i] + temp[i];


weekday[i] <- inprod(dow[i,1:6], phi[1:6]);


trend[i] <- inprod(time[i,1:n.time], beta[1:n.time]);


season[i] <- theta[1]*cosw[i] + theta[2]*sinw[i];


temp[i] <- inprod(temperature[i,1:n.temp], zeta[1:n.temp]);


}


# priors


alpha ~ dnorm(0, 0.001) # intercept


for (k in 1:n.time){


beta[k] ~ dnorm(0, 0.001) # time trend


}


gamma ~ dnorm(0, 0.001) # fire


for (k in 1:6){


phi[k] ~ dnorm(0, 0.001) # week day


}


for (k in 1:n.temp){


zeta[k] ~ dnorm(0, 0.001) # temperature


}


for (k in 1:n.pcode){


delta[k] ~ dnorm(0, tau.delta); # random intercept for postcode


delta.c[k] <- delta[k] - mu.delta;


# absolute numbers
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absolute[k] <- mu.deaths[k]*(rr-1)


}


absolute[5] <- sum(absolute[1:4]) # total deaths


tau.delta ~ dgamma(1,1)


for (k in 1:2){


theta[k] ~ dnorm(0, 0.001); # season


}


## scalars


mu.delta <- mean(delta[1:n.pcode])


p.gamma <- step(gamma) # p-value for positive risk


rr <- exp(gamma) # relative risk


}
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Analysis of daily death data during the Morwell mine fire

Summary

This latest analyses gives a 99% probability of an increase in deaths during the 45 days of
the fire, with an estimated 23 additional deaths. This is larger than the 79% to 89%
probability and 10 to 14 additional deaths from my two previous analysis. This increase in
probability and deaths occurred because this analysis used daily data whereas the previous
analyses used monthly data. Using days instead of months reduces the measurement error
between exposure and death, and an increased statistical significance and risk is entirely
expected based on the theory of measurement error [1]. This analysis also had a better
control for the potential confounder of temperature, as temperature was also modelled on a
daily time scale.

Introduction

This document contains my third analysis of the Morwell mine fire data. This is an updated
analysis using daily death data for four postcodes for the years 2009 to 2014.

Methods

Data

The death data were daily numbers from 1 January 2009 to 31 December 2014, which is
2191 days. The deaths were split by four postcodes (3840-Morwell, 3842-Churchill,
3825-Moe, 3844-Traralgon) according to usual place of residence. There were 3,414 deaths
in total.

I used population data from the Australian Bureau of Statistics for each postcode over time.
This is a further improvement on my previous analyses which used overall population data
for the Latrobe Valley.

The temperature data came from the Bureau of Meteorology weather station at Morwell
(station number: 85280), which provided daily maximum temperature. Two days were
missing and I imputed the missing temperature using the mean temperature for the days
either side of the missing day. I used maximum temperature rather than mean or minimum
temperature because previous research found that most common temperature measures are
highly correlated and perform equally well when predicting daily death rates [2].



Adrian Barnett, September 2015 2

Statistical methods

I used a regression model to examine the key hypothesis of whether deaths rates were higher
during the 45 days of the fire.

I give the model as an equation below and then explain each line of the equation.

di,t ∼ Poisson(µi,t), i = 1, . . . , 4, t = 1, . . . , 2191,

log(µi,t) = log(popi,t/10000) + α0 + postcodei + trendt + seasont +weekdayt

+ temperaturet + firet,

postcodei ∼ N(0, σ2)

trendt = ns(α1:2, t, 2),

seasont = α3 cos (2πf) + α4 sin (2πf) ,

weekdayt = α5:10Dt,

temperaturet = ns(α11:19,maximum temperaturet, 3× 3),

firet =

{
α20, if date ∈ {9-Feb-2014, 10-Feb-2014, . . . , 26-Mar-2014},
0, otherwise.

The index i is for postcode and the index t is for time. I used a Poisson model as the data
are daily counts of deaths. The trend was fitted as a natural spline (ns) with two degrees of
freedom which allowed the underlying death rate to change slowly during 2009 to 2014 due
to factors such as an ageing population. Season was fitted as an annual sinusoid and f is the
fraction of the year from 0 (1 January) to 1 (31 December) [3]. I modelled the expected
small difference in death rates by day of the week using an independent effect on each day
with Sunday as a the reference day.

Temperature was modelled as a non-linear variable to allow for increased risks in low and
high temperatures [4]. To allow for the known delay between exposure to temperature and
death I also included a lag with a delay up to 21 days. Both temperature and lag were fitted
using a natural spline with three degrees of freedom which is large enough to model a
non-linear association.

To check the adequacy of the model I examined the residuals (difference between observed
and predicted) using a histogram and autocorrelation plot.

Results

Simple table

Table 1 shows a higher mean number of daily deaths in all four postcodes during the period
of the fire compared with all other times. These crude figures do not adjust for the seasonal
pattern in deaths, and the regression model below should give a truer picture of any increase
in death rates.
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Table 1: Summary statistics on daily deaths by postcode and the time of the fire using data
for 1 January 2009 to 31 December 2014

Deaths
Postcode Fire N Mean SD Min Max

Churchill No 2145 0.075 0.27 0 2
Yes 46 0.130 0.40 0 2

Moe No 2145 0.558 0.74 0 5
Yes 46 0.717 0.81 0 3

Morwell No 2145 0.396 0.63 0 4
Yes 46 0.413 0.62 0 2

Traralgon No 2145 0.522 0.73 0 6
Yes 46 0.652 0.87 0 3

All No 8580 0.388 0.65 0 6
Yes 184 0.478 0.73 0 3
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Plots of daily deaths over time
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Figure 1: Daily death numbers in each postcode and the total number of deaths across the
four postcodes for 1 January 2009 to 31 December 2014.
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Figure 2: Daily death numbers in each postcode and the total number of deaths across the
four postcodes for 1 January 2014 to 30 April 2014. The start and end of the fire are shown
by vertical red lines.
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Statistical model results

Table 2: Model of daily deaths. Statistics are the mean and lower and upper 95% credible
interval. Estimates are on a log scale except for the relative risk and absolute number of
deaths.

Mean Lower Upper

Intercept −1.601 −1.732 −1.475
Trend, 1 −0.125 −0.346 0.096
Trend, 2 0.137 0.016 0.258
Postcode, 3825 0.285 0.225 0.346
Postcode, 3840 0.129 0.062 0.194
Postcode, 3842 −0.310 −0.426 −0.196
Postcode, 3844 −0.104 −0.165 −0.042
Season, cos 0.105 −0.057 0.269
Season, sin 0.059 −0.033 0.153
Monday −0.069 −0.196 0.056
Tuesday −0.096 −0.223 0.031
Wednesday −0.042 −0.165 0.083
Thursday −0.060 −0.186 0.064
Friday 0.049 −0.074 0.172
Saturday 0.008 −0.114 0.131
Fire, relative risk 1.324 1.034 1.656
Additional deaths during fire, 3825 8.271 0.860 16.731
Additional deaths during fire, 3840 5.848 0.608 11.830
Additional deaths during fire, 3842 1.124 0.117 2.273
Additional deaths during fire, 3844 7.733 0.804 15.642
Additional deaths, all postcodes 22.976 2.388 46.476

The probability that the death rate was higher than the average during the fire is 0.99. This
means that the probability that the death rate was not higher than the average during the
fire is 0.01. The mean increase in deaths is 1.32 as a relative risk, or 32 as a percentage. The
95% credible interval for the relative risk does not include 1, indicating that the risk was
higher than average during the fire. The mean estimated number of extra deaths during the
fire over the four postcodes is 23.

Effect of temperature

The effect of temperature in Figure 3 is exactly as expected. It shows a steep rise in risk for
high temperatures on the day of exposure, and smaller but longer lasting risk for low
temperatures [4].
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Figure 3: Estimated relative risk of maximum temperature (◦C) by temperature and lag using
a surface plot (left) and contour plot (right).
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Figure 4: Residual histogram from the model of daily deaths.

The histogram of residuals are centred on zero but with a positive skew which is as expected
when modelling small counts (Figure 4). There were four relatively large residuals over 4 as
shown in Table 3. The large residual in Traralgon on 7/Feb/2009 may be the Black
Saturday bushfires.

Table 3: Four large residuals where the model greatly under-predicted the number of deaths.
Date Postcode Deaths Predicted Residual Pearson residual

08/Oct/2010 Moe 5 0.60 4.40 5.66
19/Jan/2013 Moe 5 0.51 4.49 6.27
07/Feb/2009 Traralgon 6 0.57 5.43 7.22
06/Jun/2009 Traralgon 5 0.58 4.42 5.78

The Pearson goodness of fit statistic is 8749 which is smaller than test limit of 8958, which
is the 95th percentile of a chi-squared distribution [5]. This indicates that the model is an
adequate fit to the data.

The autocorrelation plots of the residuals show no residual autocorrelation in any postcode
as the correlations are small and close to zero (Figure 5). This means there is unlikely to be
any residual confounding by other short-term environmental factors (e.g., humidity).
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Figure 5: Autocorrelation of residuals from the model of daily deaths by postcode. The dotted
horizontal blue line is the limit for assessing significant autocorrelation.
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Appendix

JAGS Code

This is the code using the JAGS software that runs the Bayesian regression model of daily
deaths [6].

model{

# likelihood

for (i in 1:N){

deaths[i] ~ dpois(mu[i]);

log(mu[i]) <- log.pop[i] + alpha + weekday[i] + trend[i] + gamma*fire[i]

+ delta.c[pcode[i]] + season[i] + temp[i];

weekday[i] <- inprod(dow[i,1:6], phi[1:6]);

trend[i] <- inprod(time[i,1:n.time], beta[1:n.time]);

season[i] <- theta[1]*cosw[i] + theta[2]*sinw[i];

temp[i] <- inprod(temperature[i,1:n.temp], zeta[1:n.temp]);

}

# priors

alpha ~ dnorm(0, 0.001) # intercept

for (k in 1:n.time){

beta[k] ~ dnorm(0, 0.001) # time trend

}

gamma ~ dnorm(0, 0.001) # fire

for (k in 1:6){

phi[k] ~ dnorm(0, 0.001) # week day

}

for (k in 1:n.temp){

zeta[k] ~ dnorm(0, 0.001) # temperature

}

for (k in 1:n.pcode){

delta[k] ~ dnorm(0, tau.delta); # random intercept for postcode

delta.c[k] <- delta[k] - mu.delta;

# absolute numbers



Adrian Barnett, September 2015 11

absolute[k] <- mu.deaths[k]*(rr-1)

}

absolute[5] <- sum(absolute[1:4]) # total deaths

tau.delta ~ dgamma(1,1)

for (k in 1:2){

theta[k] ~ dnorm(0, 0.001); # season

}

## scalars

mu.delta <- mean(delta[1:n.pcode])

p.gamma <- step(gamma) # p-value for positive risk

rr <- exp(gamma) # relative risk

}
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